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Abstract. We have calculated the pressure-dependent electron–electron scattering part of the
thermal resistivity,Wee(P ), for three alkali metals, Li, Na and K, using a Fermi liquid model.
Within this model, the electron–electron interaction is given by self-energy derivatives. A first-
order perturbation expansion of the self-energy6 gives the commonly usedGW -approximation.
We have compared this with aGW0-approximation, where0 is a vertex correction. By using a
sum rule, we show that theGW0-approximation should be preferred in calculating the electron–
electron interaction. We use four different static dielectric functions, describing the exchange and
correlation, in the screening potentialW, namely the RPA function, the SSTL function, an LDA
function and a Hubbard modified version of the LDA function, HUB. We have also calculated
the exchange and correlation contribution includingdynamic dielectric functions, within the
GW -approximation. The results for the sum rule indicate that the dynamic approximation that
we use is not suitable for calculating the electron–electron interaction.

The thermal resistivityWee(P ) is calculated in the pressure region 0–120 kbar for Na and
K, and in the region 0–100 kbar for Li. The LDA dielectric function gives results forWee(P ) for
Li and K that are 10 to 20 times higher than the other dielectric functions, and also compared to
experimental results. This has its origin in the approximation for the0 function, which breaks
down for small enough densities, when the electron density parameter isrs > 5. The SSTL and
Hubbard functions show quite similar behaviour for all three of the metals, except for at higher
pressures in K (>100 kbar), where the SSTL function causes a more rapid increase inWee(P ).
The RPA function, finally, gives a similar behaviour to the SSTL and Hubbard functions in
Wee(P ) for Na and K, while it results in a lowering ofWee(P ) of ≈40% for Li.

We have also calculated the quasiparticle mass and the magnetic susceptibility, and
compared these with experiment. Even in these cases it is the LDA function that gives the
largest deviations from experiments.

1. Introduction

Even though the electron–electron scattering part of the thermal resistivity,Wee, in metals
only gives a minor contribution to the total thermal resistivity, it has intrinsic interest. It
turns out to be one of the main causes for the deviation of the Lorentz function from
the Wiedemann–Franz law above the Debye temperature,2D. Laubitz [1] has managed
brilliantly to separate this contribution from experimental total thermal and electrical
resistivity results. Theoretically,Wee can be calculated by solving the Boltzmann equation.
It then turns out that the temperature dependence ofWee is linear,Wee = BT , whereB is
a constant. Several different approaches have been taken to calculateWee, giving results of
the same order as experiments [2–4].
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In an earlier paper, we calculatedWee with particular emphasis on the pressure
dependence for the alkali metals Li, Na and K [4]. We used an isotropic Fermi liquid
model, as described by MacDonald and Geldart [2], and modified it in order to take account
of the ions. The electron–electron interaction was described in terms of Landau parameters,
given by Hedin [5], who used a simpleGW-model, with the RPA screening function. The
results at atmospheric pressure are within the experimental limits. Simple arguments show
that the volume dependence is proportional tor5

s , wherers is the electron density parameter
(n = 4πr3

s /3). However, we have shown that taking account of the bandstructure of the
metals, in terms of an effective band-mass, will give a more complex volume or pressure
dependence [4].

We have also calculated the contribution from Umklapp scattering, which is an effect of
the curvature of the Fermi surface, with particular emphasis on the pressure dependence [6].
This was first done by Lawrence and Wilkins [3], who followed a different approach in
calculatingWee. They used a variational method, where anisotropic scattering was also
included. In their calculations, they were able to explicitly separate a contribution from
Umklapp scattering. MacDonald and Geldart [2] incorporated this contribution into their
calculations, showing that it only gives a minor correction at atmospheric pressure. We
have shown that it also gives a minor correction toWee(P ) at higher pressures, of the order
of ∼5% [6].

MacDonald and Geldart [2] have also calculatedWee at atmospheric pressure using
another set of Landau parameters given by Rice [7], who used a Hubbard model to describe
the screening, proceeding from a different approach to that followed by Hedin [5]. These
parameters gives values ofWee that are∼50% higher than the values given by Hedin’s
parameters, and also higher than the experimental results. This indicates the importance of
the description of the electron–electron interaction itself, when calculatingWee. Therefore,
our aim within this paper is to investigate how exchange and correlation effects will affect
Wee, both at atmospheric and for higher pressures, when using different screening models,
calculating the electron–electron interaction.

There has been a lot of interest in the electron–electron interaction in an electron gas for
many years, and many different approaches have been followed within the many-body theory
[5, 8–11]. Hedin [5] expressed the self-energy6 in terms of the electron Green’s function,
G(q), and a screened, static, potential,W(q) = v(q)/ε(q), wherev(q) is the Coulomb
potential andε(q) is the dielectric screening function. The first term in a perturbation
expansion of6 is then given byGW, and the following terms will be of higher order
in W. Including only the first term,GW, with a free-electron-like Green’s function and a
RPA dielectric function, Hedin arrived at a reduction of the occupied bandwidth of 5–10%,
compared to the free-electron value in an electron gas.

Northrupet al [9, 10] have calculated the self-energy for Na, Li and Al using a method
based on Hedin’sGW-approximation. They include exchange and correlation effects in the
screening dielectric function,ε(q, ω), and approximate the dynamical dependence with a
plasmon-pole model. The energy dependence of the Green’s function was made consistent
with the calculated quasiparticle energy spectrum. The self-energy gives a bandwidth
reduction of 0.7 eV for Na, resulting in a total bandwidth of 2.5 eV, which is also the
experimental value [9]. Using Hedin’s method gave at most a reduction of 0.3 eV. The
agreement in the case of Al is somewhat smaller, giving a bandwidth 6% too small [10],
compared to experiment.

Mahan and Sernelius [11] argue that when using theGW-approximation, it is not
consistent to include higher-order terms in the dielectric function, describing the exchange
and correlation effects, as Northrupet al [9, 10] did, without including them in theGW-
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approximation itself. Instead, one should work with aGW0-approximation, where0 is the
vertex correction. They show that this will decrease the bandwidth correction by 5–10%,
compared to theGW-approximation. In the case of Na they obtain a bandwidth that is 10%
too large [12], of the same size as Hedin’s [5] results, but they argue that the experiments
(photoemission) should be corrected for surface effects and broadening of electronic states,
which would give better agreement with their results. In the case of Al, they get a bandwidth
that is only 3% too large, which is better than what Northrupet al [10] achieved.

Within Landau’s Fermi liquid theory, the quasiparticle interaction,f (k, k′), is given
by the second-order derivative of the total energy of an electron gas with respect to the
distribution function,nσ (k),

δE =
∑
k,σ

ε(k) δnσ (k) + 1

2

∑
k,k′,σ,σ ′

fσ,σ ′(k, k′) δnσ (k) δnσ ′(k′) + · · · (1)

where

fσ,σ ′(k, k′) = δε(k)

δnσ ′(k′)
= δ2E

δnσ (k) δnσ ′(k′)
. (2)

E is here the total energy,ε(k) is the quasiparticle energy andσ is the spin index.
In this paper, we calculatef (k, k′) using both Hedin’sGW -approximation [5] and

Mahan and Sernelius’sGW0-approximation [11], including different static dielectric
functions in the screening potential. Expressing the interaction function in terms of Landau
parameters, we check both approximations, using a sum rule. We also calculatef (k, k′)
introducing the correspondingdynamicdielectric functions within theGW -approximation,
using Overhauser’s plasmon-pole model [13]. We then calculate the electron–electron
scattering part of the thermal resistivity, using the Landau parameters, including the pressure
dependence, for the alkali metals Li, Na and K. We also calculate the quasiparticle mass
and the magnetic susceptibility for the alkali metals, and compare the results for different
dielectric functions with experiments.

2. The quasiparticle interaction

The interaction function,f (k, k′), is calculated at the Fermi surface, which is assumed to
be spherical. It then only depends on the angleθ between thek-vectors. It is customary
to split f (θ) into two functions, depending on the spin direction of the two interacting
quasiparticles:

fσ,σ ′(θ) = f0(θ) + fe(θ)δσσ ′ . (3)

Following the notation used by Hedin and Lundqvist [8], we can write the interaction
function as

f (k, k′) = 2π iZ2 (2π)3

�

δ6(k)

δG(k′)
+ Z

∫
δ6(k)

δG(q)
G2(q)

δ6(q)

δnk′
dq dω (4)

whereZ is the renormalization constant,Z = (1 − δ6/δω)−1, and� is the total volume
of the system.6(q) is the self-energy andG(q) is the Green’s function. The notationq
includes(q, σ, ω), whereω is the quasiparticle energy.

The self-energy can be written in ordinary space as [5]

6(12) = i
∫

W(1+3)G(14)0(42; 3) d(34) (5)
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where 0 is the vertex function. We have used the notation(1) = (x1, t1). The vertex
function is given as

0(12; 3) = δ(12) δ(13) +
∫

δ6(12)

δG(45)
G(46)G(75)0(67; 3) d(4567). (6)

These two self-consistent equations will generate expressions for the self-energy as
functionals ofG in terms of the screened interactionW via an iteration process.

2.1. The static GW-approximation

If we only include the first term of0 in 6, and Fourier transform the expression, we arrive
at

6(k, ω) = i

(2π)4

∫
e−iω′1W(q, ω′)G(k − q, ω − ω′) dq dω′ (7)

which is the commonly usedGW -approximation. 1 is a positive increment, and we let
1 → 0 after performing the frequency integration.

Hedin [5] has calculatedf (k, k′) given by (4) in theGW-approximation. Including
terms of the second order of the screened potentialW , he obtained

fe(k, k′) = f (1)
e (k, k′) + f (2)

e (k, k′)

= − Z2

�

{
W(k − k′; 0) + i

(2π)4

∫
[2W(k − k′; 0)W(q)G(k + q)G(k′ + q)

+W(q)W(q + k − k′)G(k + q)(G(k′ − q) + G(k + q))] dq dω
}

(8)

f0(k, k′) = Z2

�

i

(2π)4

∫
W 2(q)G(k + q)(G(k′ − q) + G(k′ + q)) dq dω. (9)

He used a free-electron type of Green’s function

G(q, ω) = 1/(ω − ε|q| − ε0 − iδF ) (10)

whereε|q| = h̄2q2/2m, δF > 0 if |q| < kF and δF < 0 if |q| > kF . ε0 was chosen as the
correction to the chemical potential,µ = εkF

+ ε0.
The screening potential,W(q, ω) = v(q)/ε(q, ω), is then approximated in the statical

limit, W(q, 0). The integration overω in (8) and (9) is performed analytically, and the
three-dimensional integration overq is computed numerically, for different values of the
angleθ (the angle betweenk andk′) and the electron density parameter,rs .

Rice [7] has calculated the quasiparticle interaction from a different point of view. He
used the definition off (k, k′) as the second derivative of the total energy with respect to
the distribution function, equation (2). The energy was given by the Hubbard formula, and
the derivation gave an expression off (k, k′) which looks very similar to the one given
by Hedin. The main difference is the renormalization factor,Z, which doesnot occur in
Rice’s formula. Comparing results for the compressibility shows that theZ-factor should
be excluded (see Hedin and Lundqvist [8]), so we have putZ = 1 in the rest of this paper.

2.2. The dynamic GW-approximation

The frequency dependence in the dielectric function,ε(q, ω), has been included by Northrup
et al [10], and Hybertsen and Louie [14] using a plasmon-pole model, introduced by
Overhauser [13]. They have calculated the self-energy in theGW -approximation using a
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dynamically screened potentialW(q, ω) = v(q)/ε(q, ω). In the generalized plasmon-pole
model, they postulate the dielectric function as

ε−1(q, ω) = 1 + A(q)[ω − ω̃(q) + iδ]−1 − A(q)[ω + ω̃(q) + iδ]−1 (11)

where

A(q) = −π

2

ω2
p

ω̃(q)
(12)

and the effective plasma frequency is given by

ω̃2(q) = ω2
p/[1 − ε−1(q)] (13)

whereωp is the ordinary plasma frequency.δ is here always positive.
We have used the plasmon-pole model to describe a dynamic dielectric function,

calculating the quasiparticle interaction,f (k, k′). We use the same equations as in the
static case, (8) and (9), but we include the plasmon-pole model in the screened potentialW.
The frequency integral can still be evaluated analytically, and theq-vector integration is then
performed numerically. Details can be found in the appendix. The numerical calculations
have to be performed with care, since the real part of the denominator is close to 0 in
some regions inq-space. This problem never occurs when calculating the self-energy, and
it seems to have its origin in the plasmon-pole model itself.

2.3. The static GW0-approximation

Mahan and Sernelius [11] calculated the self-energy, including a vertex correction,0. The
dominant, screening exchange part of the self-energy is then given by [15]

6(k, ω) = i

(2π)4

∫
e−iω′1W(q, ω′)G(k − q, ω − ω′)0(q, ω′) dq dω′. (14)

They expressed the dielectric function as

ε(q, ω) = 1 − v(q)P 0(q, ω)0′(q, ω) (15)

with

0′(q, ω) = 1/[1 + g(q)v(q)P 0(q, ω)] (16)

whereP0(q, ω) is the irreducible polarizability andg(q) is a local-field correction. Several
different approximations have been used to describeg(q) [16–18]. It has been shown that
the vertex correction is given by0 = 0′, for this type of dielectric function [19]. In this
way, the self-energy will have the same power of the vertex correction0 in the denominator
and numerator of (14).

Proceeding from (14), the quasiparticle interaction is given by

fe(k, k′) = − 1

�

{
W(k − k′; 0)0(k − k′; 0)

+ i

(2π)4

∑
σ

∫ [
W(k − q)0(q)G2(q)W(q − k′)0(k′)

−v(q)g(q)W(q) 02(q)G(k + q)(G(k′ + q) + G(k′ − q))
]

dq dω

}
(17)

f0(k, k′) = i

�(2π)4

∑
σ

∫ {
W 2(q)03(q)G(k + q)(G(k′ − q) + G(k′ + q))

}
dq dω. (18)
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When the frequency integration is performed for a static, screened interaction,W(q, 0), and
vertex function,0(q, 0), using a free-electron Green’s function, and all quantities are made
dimensionless, by multiplying by the factor�/(4π2e2αrs), we end up with the integrals

fe(k, k′) = −W ′(k − k′)0(k − k′) + 1

π

∫
W ′(q)v′(q)02(q)g(q)

×
[

21

(k − k′) · q
− 22

(k − k′ + q) · q

]
dq (19)

f0(k, k′) = − 1

π

∫
W ′2(q)03(q)

[
21

(k − k′) · q
− 22

(k − k′ + q) · q

]
dq (20)

whereq, k andk′ are in units of 2kF , and with the dimensionless quantities

W ′(q) = αrs

4π |q|2ε(|q|) (21)

and

v′(q) = αrs/4π |q|2 (22)

with α = (4/9π)1/3. The step functions are defined as

21 = 2(1/4 − (k + q)2) − 2(1/4 − (k′ + q)2) (23)

22 = 2(1/4 − (k + q)2) − 2((k′ − q)2 − 1/4). (24)

The integrals (19) and (20) are then solved numerically.

Figure 1. The four different dielectric functions,ε−1, as functions ofq/kF , with rs = 4. They
are all given by (15) and (16), using different functions forg(q), as described in the text.

2.4. The static dielectric functions

We have used four different static dielectric functions, corresponding to four differentg(q)-
functions in (16), to calculatef (k, k′). They are the RPA function, a function given by
Singwi, Sj̈olander, Tosi and Land (SSTL) [16], an LDA function [18] and a Hubbard form
of the LDA function (HUB). They are shown in figure 1, as a function ofq, for rs = 4.



Thermal resistivity in metals 1027

The RPA or Lindhard function, which is the simplest, corresponds tog(q) = 0 in (16),
which means that0 = 0′ = 1, and we will not have any vertex corrections. It is derived by
approximating the exact polarization diagram by its first term, the irreducible polarizability,
P 0(q, 0).

The derivation of the SSTL dielectric function [16] explicitly includes screening effects
from exchange and correlation holes in a parametrical form:

gSST L(q) = a[1 − e(−b|q|2/k2
F )] (25)

where the parametersa andb depend onrs .
The LDA dielectric function is obtained from the definition

g(q) = − 1

v(q)

δVxc

δn
(26)

whereVxc is the exchange and correlation potential andn is the charge density. We have
chosen the parametrization given by Perdew and Zunger [18]:

gLDA(q) = −0.0474

v(q)

rs

n(1 + 1.0529
√

rs + 0.3334rs)3

×
(

0.4387√
rs

+ 0.8689+ 0.6143
√

rs + 0.1482rs

)
(27)

wheren = (
4πr3

s /3
)−1

.
The Hubbard form, finally, is given by

gHUB(q) = gLDA(q)
k2
F

k2
F + |q|2 (28)

where the correction to the LDA function corresponds to the original Hubbard model [17],
which can be interpreted as a screening arising from the exchange hole around the electron.

The validity of these dielectric functions has been discussed by, e.g., Hedin and
Lundqvist [8] and Mahan [15]. The SSTL function is argued to be preferred over the
RPA and Hubbard functions, since it results in a positive pair distribution function (which
it is by definition), while the other dielectric functions give a negative pair distribution
function for small values ofr, the electron–electron distance. The LDA version ofg(q)

is quadratic inq, while the other models give ag(q) that is quadratic for smallq, and
approaching an asymptotic value for largeq (see figure 3 in [8]). However, the large-q
behaviour ofg(q) is not crucial in the dielectric function, asv(q)P 0(q) quickly drops to
zero, outphasing the effect ofg(q).

2.5. Numerical calculations

The three-dimensional integrals in (19) and (20) and in the corresponding equations for
the GW -approximation (equation (106) in Hedin [5]) were approximated as sums over
all q-vectors. The summation was performed in three orthogonal directions, finishing at
|q| = 4kF . Symmetries allowed for restrictions in the number ofq-points used, and the
quasiparticle interaction was well converged when the number ofq-points in each direction
exceeded 100 within the given interval, i.e. with a spacing<0.04kF between theq-points.

When using a dynamic dielectric function, theω-dependent part of the integrals (8)
and (9) is solved for analytically, ending up with the two three-dimensional integrals given in
the appendix, equations (A1) and (A2). These are also solved numerically. The integrations
have to be handled with care, since they will result in principal values which are close to
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singularities. The problem occurs when(q −k′) ·q = ω̃′(q) in the denominator. The angle
betweenq andk′ is denoted asθqk′ = a cos

(
q · k′). The real part of the denominator in the

parentheses following the step function23 equals zero when theq-vectors are positioned
at an angleθqk′0 relative tok′ given as

θqk′0 ≡ a cos
(|q| − ω̃′(q)/|q|) . (29)

In fe(k, k′), equation (A1), the denominator is linear, and inf0(k, k′), equation (A2), it
is squared. The principal value has been handled in the following way: to everyq we
determine the correspondingθqk′0 (if it exists). The integral is solved analytically for the
azimuthal angular part, in a small area around the critical point,q0, with cos(θqk′0) ± α,
integrating over cos(θqk′), assuming the denominator of the integrand to be slowly varying
in this region.α has been chosen to be 0.01 for the linear denominator, and 0.1 in the case
of the squared denominator. Withα equal to 0.1, the contribution from the analytical part
of the integral is less than 1% of the total result, as explained in the appendix. Whenθqk′0
is very close to 0 orπ , we reduce the interval where the analytical solution is obtained,
to make sure that we always have a symmetric interval around the critical angle. In that
case, we solve for the part of the integral where cos(θqk′) is between the reduced interval
and the originalα numerically, by choosing theq-points symmetrically around the critical
angle. Those parts of the integral which are outside these regions are solved for as in the
static case.

3. The Landau parameters

The quasiparticle interaction functionf (k, k′) can be expanded in terms of Legendre
polynomials:

f0(k, k′) + fe(k, k′)/2 =
∞∑
l=0

(2l + 1)F s
l Pl(cosθ) (30)

fe(k, k′)/2 =
∞∑
l=0

(2l + 1)F a
l Pl(cosθ) (31)

whereθ is the angle betweenk andk′. The Landau parametersF s
l andFa

l are then used
to calculateWee as described in the next section.

The results forf (k, k′) from using different models for the self-energy,6, and different
dielectric functions can be checked by using the sum rule derived by Brinkmanet al [20]:

S = 1 + Fa
0

1 + Fa
0

+
∞∑
l=1

(2l + 1)

(
F s

l

2l + 1 + F s
l

+ Fa
l

1 + Fa
l

)
= 0. (32)

The results for the sum rule are given in table 1, forrs = 4. Using static dielectric functions,
comparing theGW - andGW0-approximations, it turns out that theGW0-approximation
gives results forS that are closer to 0 for all dielectric functions except the RPA one.
However, since the RPA function is defined with0 = 1, the two approximations will be
identical in this case. This indicates that theGW0-approximation should be used when
including exchange and correlation in the dielectric function, as pointed out by Mahan and
Sernelius [11].

With dynamical dielectric functions, we get results for the sum rule (using theGW -
approximation) which are far from 0 for all dielectric functions, with the RPA giving the best
result. The deviations seem to originate from the plasmon-pole model itself. As described
by Overhauser [13], the excitation spectrum is replaced with a single mode, equation (13),
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Table 1. Results for the sum rule, (32), obtained using two different expressions for the
self-energy. The four columns show the results obtained when using four different dielectric
functions, as described in the text. In the first row, we use theGW -approximation. The second
row shows the corresponding results obtained using theGW0-approximation.

RPA SSTL LDA Hubbard

GW 0.3155 0.9788 1.0160 1.0453
GW0 0.3155 0.5568 0.7477 0.5757

Dynamic 4.5150 8.2328 6.5896 7.6941

where the plasmon mode dominates for smallq. This approximation is least reliable in the
intermediate-q range, where the spectral width of the excitations is comparable to ¯hω̃(q). It
is in the same range that the denominators of the integrals, equations (A1) and (A2), become
small, and it seems that the restrictions in the plasmon-pole model make it unsuitable for
use when calculating the quasiparticle interaction.

Figure 2. The Landau parameterFa
0 as a function of the electron density parameter,rs . It was

calculated using theGW0-approximation, including four different static dielectric functions:
the RPA, LDA, and SSTL functions and a Hubbard form of the LDA function (HUB).

The Landau parametersFa
0 and F s

1 for the four different static dielectric functions
are shown in figures 2 and 3, as functions ofrs , within the GW0-approximation. The
parameters are larger in the dynamic case, as is shown in figures 4 and 5, particularly for
large rs-values. Three of the dielectric functions give quite similarrs-dependence in the
static case. The LDA function, however, gives rise to a rather peculiar behaviour of the
parameters for largers , both in the static and in the dynamic case. This has its origin in a
singularity in the approximated vertex function0, equation (16), and also in the dielectric
function, wheng(q)v(q)P 0(q, 0) = −1, which occurs for a small, critical value ofq, when
rs > 5. Below this critical value ofq, 0(q) andε−1(q) turn negative, and the result of the
electron–electron interaction is then less reliable.
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Figure 3. The Landau parameterF s
1 as a function of the electron density parameter,rs . It was

calculated using theGW0-approximation, including four different static dielectric functions:
the RPA, LDA, and SSTL functions and a Hubbard form of the LDA function (HUB).

Figure 4. The Landau parameterFa
0 as a function of the electron density parameter,rs . It was

calculated using theGW -approximation, including four different dynamic dielectric functions:
the RPA, LDA, and SSTL functions and a Hubbard form of the LDA function (HUB).

In turn, a negative dielectric function implies a negative compressibility function, which
is defined from the relation

lim
q→∞ ε(q, 0) = 1 +

(
qT F

|q|
)2

κ

κf ree

(33)

whereqT F is the Thomas–Fermi wave-number, andκf ree is the free-electron compressibility.
A negative compressibility represents an unstable electron gas, and has been discussed in [8],
[15] and [21]. This seems to be a result for all dielectric functions, when the density of the
electron gas becomes smaller than a critical value, which differs slightly between different
models. Gorobchenkoet al [21] suggests that this ‘is associated with the internal nature
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Figure 5. The Landau parameterF s
1 as a function of the electron density parameter,rs . It was

calculated using theGW -approximation, including four different dynamic dielectric functions:
the RPA, LDA, and SSTL functions and a Hubbard form of the LDA function (HUB).

of the model under consideration and does not stem from the approximation used’. As a
comparison with solids, it is noted that no metal exists withrs > 5.63, which is the radius
of Cs, indicating that there is a correspondence between unstable electron gases and solids.

As a check of the different dielectric functions, comparing with experimental results,
we have calculated the quasiparticle mass,m∗, and the magnetic susceptibility,χ , for the
alkali metals within the Fermi liquid model. The quasiparticle mass is given by

m∗ = mb(1 + F s
1/3) (34)

where the band-mass,mb, has been calculated using an LMTO (linear muffin-tin orbital)
bandstructure [4]. The Landau parameter used,F s

1 , is given for the four different dielectric
functions, using theGW0-approximation in the static case, and theGW -approximation in
the dynamic case.

Table 2. The quasiparticle mass,m∗, in units of the free-electron mass, as given by (34), for
the three alkali metals Na, K and Li. In the first column, we give the effective radius, used
for the Landau parameters. In the second column, the results obtained by using Hedin’sGW -
approximation, including the renormalization constant,Z, are shown. The next four columns
show the results obtained using different dielectric functions, within theGW0-approximation.
The last column shows experimental results, taken from the specific heat masses given by
Kittel [22].

r∗
s Hedin RPA SSTL LDA Hubbard Experiment

Na 3.72 Static 1.00 0.97 1.07 1.07 1.01 1.08± 0.04
Dynamic — 0.87 1.02 0.82 0.98

K 4.55 Static 1.05 1.02 1.17 1.51 1.07 1.11± 0.03
Dynamic — 1.00 0.99 −1.22 1.24

Li 5.00 Static 1.54 1.52 1.78 2.41 1.58 1.55± 0.15
Dynamic — 1.46 2.09 −3.47 1.92
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Since the Landau parameters are valid only for an electron gas, we have to take account
of the ions in some simple way, when using the parameters for real metals. MacDonald
and Geldart [2] have shown that one can simply rewrite the parameters as

F̃l(rs) = Fl(mbrs/ε) = Fl(r
∗
s ) (35)

using an effective radiusr∗
s , whereε is the dielectric constant given byε = 1 + 4πnα, n

is the number density of the ions, andα is the polarizability of the individual ion cores. In
the rest of the paper, we will always use the effective radius when we determine the Landau
parameters for the different alkali metals.

The results form∗ at atmospheric pressure are given in table 2, for both the static
and the dynamic case. We also include the results given by Hedin [5], including the
renormalization constant,Z, in (8) and (9). A comparison with experimental results [22],
where the electron–phonon renormalization was removed, is also included.

The results of the dynamic case are all deviating more from the experimental values
than in the statical case. In particular, the LDA function gives anm∗ that isnegativefor K
and Li, showing no correspondence with experiments, indicating that the dynamical results
are less reliable. The reason for these results is that the effective radius is in the region
where the Landau parameters of the LDA function show a divergent behaviour.

Table 3. The magnetic spin susceptibility,χ , in units of the free-electron spin susceptibility,
χ0, as given by (36), for the three alkali metals Na, K and Li. In the first column, we give
the effective radius used for obtaining the Landau parameters. In the second column, the
results given by using Hedin’sGW -approximation, including the renormalization constant,Z,
are shown. The next four columns show the results obtained using different dielectric functions,
within the GW0-approximation. The last column shows experimental results, given by Oliver
and Myers [23].

r∗
s Hedin RPA SSTL LDA Hubbard Experiment

Na 3.72 Static 1.15 1.44 1.46 1.30 1.18 1.67± 0.05
Dynamic — 0.84 0.58 0.32 0.73

K 4.55 Static 1.19 1.53 1.55 1.07 1.13 1.73± 0.01
Dynamic — 0.86 0.52 0.39 0.92

Li 5.00 Static 1.74 2.28 2.31 1.50 1.61 2.59± 0.06
Dynamic — 1.20 0.69 0.52 1.41

Focusing on the static case, in the case of Na, the LDA and SSTL dielectric functions
give results ofm∗ that are within the experimental limits, while the other functions give
values ofm∗ that are too small. In the case of K and Li, the LDA function gives anm∗

that is too high, again explained by the divergent behaviour ofF 1
s . The SSTL function

also gives values ofm∗ that are slightly too high for both K and Li. The other dielectric
functions give values ofm∗ that are too small for K, while they are within the experimental
limits for Li.

The spin magnetic susceptibility is given within the Fermi liquid model by

χ

χ0
= m∗

m

1

1 + Fa
0

(36)

where χ0 is the free-electron magnetic susceptibility, and the quasiparticle mass,m∗, is
given by (34). We have calculated the magnetic susceptibility at room temperature and
atmospheric pressure using the four different Landau parameters, for the static and dynamic
case, and the results are given in table 3. We have also compared with Hedin’s results,
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including theZ-constant. The experimental results are as given by Oliver and Myers [23],
who calculated an experimental ‘mean value’, using the results from several experiments.

For all three of the alkali metals, all dielectric functions give values ofχ that are too
low, compared with experiment, in particular in the dynamic case. As with the quasiparticle
mass, it is the LDA function that gives values ofχ that deviate most from experiment, and
the differences increase for larger effective radii. In the static case, the Hubbard function
also shows large deviations. For all three of the metals, it is also clear that Hedin’s results
are much too low, indicating that theZ-constant should be put equal to 1.

4. The thermal resistivity and its pressure dependence

The thermal resistivityWee can be found by solving the Boltzmann equation, and for an
isotropic Fermi liquid it is then given by [2]

Wee = 2.622× 10−2(m∗2r5
s T /H(λ))〈W̃ (θ, φ)(1 − cosθ)/ cos(θ/2)〉 (37)

where〈. . .〉 denotes an surface integral over the spherical Fermi surface, i.e. over the angles
θ andφ, which describes the relative location of fourk-vectors (all situated on the Fermi
surface) representing the two interacting electrons before and after the scattering event, as
explained by, e.g., Smith and Jensen [24].W̃ (θ, φ) is the transition probability,m∗ is the
quasiparticle mass, given by (34), andH(λ) is an infinite series that can be approximated
to ≈1/2.

The transition probability,W̃ (θ, φ), has been expanded in Legendre polynomials in the
forward-scattering limit (φ = 0), where the coefficients are simply related to the Landau
parameters. If we include only two terms in the expansion ofφ, we obtain

W̃↑↑ = |Ã↑↑(θ, 0) cosφ|2 (38)

W̃↑↓ = | 1
2(2Ã↑↓(θ, 0) − Ã↑↑(θ, 0) + Ã↑↑(θ, 0) cosφ)|2 (39)

Ã↑σ (θ, 0) = 1 ± Fa
0

1 + F0a
+

∑
l

[(
F s

l

1 + F s
l /(2l + 1)

± Fa
l

1 + Fa
l /(2l + 1)

)
Pl(cosθ)

]
(40)

where the Landau parameters are modified according to (35).

Table 4. The electron–electron scattering part of thermal resistivity,Wee/T , in units of
10−8 m W−1, as given by (37), for the three alkali metals Na, K and Li. In the first column, we
give the effective radius, used for obtaining the Landau parameters. In the second column, the
results given by using Hedin’sGW -approximation, including the renormalization constant,Z,
are shown. The next four columns show the results obtained using different dielectric functions,
within the GW0-approximation.

r∗
s Hedin RPA SSTL LDA Hubbard

Na 3.72 Static 67 73 65 85 69
Dynamic — 61 354 169 190

K 4.55 Static 231 244 270 4057 327
Dynamic — 400 895 43 100 1620

Li 5.00 Static 65 65 94 1633 101
Dynamic — 115 1490 28 900 570

We have calculated the pressure dependence ofWee(P ) for three alkali metals, Li,
Na and K. This was done earlier [4], using Hedin’s Landau parameters, including the
renormalization constant,Z, in (4). Now, we have instead used the Landau parameters



1034 L Lundmark

Figure 6. The pressure-dependent electron–electron scattering part of the thermal resistivity,
Wee(P )/T , in units of 10−8 m W−1 for Na, obtained using (37). We have used Landau
parameters given by four different dielectric functions: the RPA, LDA, and SSTL functions and
a Hubbard form of the LDA function (HUB).

Figure 7. The pressure-dependent electron–electron scattering part of the thermal resistivity,
Wee(P )/T , in units of 10−8 m W−1 for K, obtained using (37). We have used Landau parameters
given by three different dielectric functions: the RPA, and SSTL funtions and a Hubbard form
of the LDA function (HUB).

given by theGW0-approximation, with the four different dielectric functions, in the static
approximation. The results are shown in figures 6–8, where the pressure dependence is given
by an equation of state. We also give the thermal resistivity at zero pressure,Wee(P = 0),
in table 4, where a comparison with the dynamic case also is made. As the pressure
dependence has been discussed more thoroughly in [4], we just point out a few important
features here.
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Figure 8. The pressure-dependent electron–electron scattering part of the thermal resistivity,
Wee(P )/T , in units of 10−8 m W−1 for Li, obtained using (37). We have used Landau
parameters given by three different dielectric functions: the RPA, and SSTL functions and
a Hubbard form of the LDA function (HUB).

First of all, if we neglect the effects of the bandstructure, the volume dependence will
look like Wee(rs) ∼ r5

s . This is the case for Na, figure 6, which has an almost spherical
Fermi surface. All dielectric functions give rather similar results forWee(P ), where the
largest differences are atP = 0 kbar. The LDA function then results in aWee that is≈25%
larger than the lowest value, which is given by the SSTL function.

In the case of K, figure 7, the Fermi surface will be more distorted with increasing
pressure, which means that the bandstructure will have a more prominent significance for
the pressure dependence. This is most clearly seen in the band-mass,mb. The thermal
resistivity depends on the band-mass asWee ∼ m2

b, andmb increases by almost a factor of 2
in the case of K [4], which is the reason forWee(P ) reaching a minimum and then starting
to increase with increasing pressure. In figure 7 we show the results forWee(P ) obtained
using the RPA, SSTL and Hubbard corrected LDA dielectric function (HUB).Wee(P ) has
the same pressure behaviour for these three dielectric functions, and they are relatively
closely gathered at small pressures, spreading out more when the pressure is around 100
kbar, where the SSTL function gives the highest values, and the RPA the lowest one,
with a difference of a factor of 2. The more rapid increase inWee(P ) using the SSTL
function is mainly an effect of an increase inm∗ (34), which can be seen in figure 2. In
the pressure region of interest the effective radius is 4.3 6 r∗

s 6 5.4, where the relative,
absolute increase inF 1

s is quite prominent for the SSTL function. Instead of describing
the transition probabilityW̃ as a function of Landau parameters, it can of course also be
rewritten as a function ofm∗ andχ , using the definitions (34) and (36). The increase inW̃

as a function of pressure can then also be described as being dominated by the increase in
m∗. The LDA dielectric function, finally, not shown in figure 7, gives aWee(P ) which is
more than 15 times larger than the other functions atP = 0, which is seen in table 4.

The displacement is even more pronounced in the case of Li, figure 8. Now, the
results for different dielectric functions are more spread out, where the RPA function gives
the lowest values ofWee(P ), with the SSTL function and the Hubbard corrected LDA
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function (HUB) in order of increase. The difference between the LDA function and the
other dielectric functions atP = 0 kbar is now a factor of 25, according to table 4. Li has
a more complex bandstructure than the other alkali metals, with a phase transition from bcc
to fcc at 69 kbar, but the changes of the Fermi surface are not that dramatic in the pressure
range of interest here, which means that the dominant part inWee(P ) is r5

s , as in the case
of Na.

A comparison between the staticGW0-approximation and the dynamicGW -
approximation ofWee(P = 0) in table 4, shows that the dynamic approximation gives
larger values in all cases except for when using the RPA function for Na. This of course
follows from the much larger values of the Landau parameters in the dynamic case, in
particular for the higher effective radius,r∗

s .

Table 5. The quantityWee/T −ρee/L0T
2, in units of 10−8 m W−1, for the two alkali metals Na

and K, which is the quantity to be compared with experimental results. The Umklapp scattering
function, 1, and the DMR corrections have been included inWee. In the first column, the
results given by using Hedin’sGW -approximation, including the renormalization constant,Z,
are shown. The next four columns show the results obtained using different dielectric functions,
within the GW0-approximation. The last column shows experimental results, given by Cook
and co-workers [25, 26].

Hedin RPA SSTL LDA Hubbard Experiment

Na Static 78 84 75 98 80 110± 60
Dynamic — 70 408 195 220

K Static 261 275 305 4578 369 270± 50
Dynamic — 451 1011 48 600 1828

A comparison with experimental data, which only are available atP = 0, gives a hint
as to which dielectric function to prefer. The experimental results are given in table 5
for Na and K. MacDonald and Geldart [2] argue that the theoretical values ofWee have
to be corrected before any comparison with experiment can be made. One correction,
which they refer to as a band correction, is expressed in a ‘fractional Umklapp scattering’
function, 1. This will give a small increase ofWee, of the order of a few per cent [6].
The second correction accounts for deviations from Matthiesen’s rule (DMR), as an effect
of the interference between electron–electron and electron–phonon scattering mechanisms.
This correction will give an increase ofWee of about 20%, according to MacDonald and
Geldart [2].

Since the experimental value is calculated indirectly as the correction to the Lorentz
function, given by the total electrical and thermal resistivity [1], the correct expression to
compare with should be

Wee

T
− ρee

L0T 2
. (41)

Using MacDonald and Geldart’s [2] expression forρee/L0T
2, we arrive at the results given

in table 5.
Using the static approximation, in the case of Na, all calculations are within the

experimental limits, where the LDA dielectric function gives the highest value ofWee,
and the SSTL function gives the lowest value—very close to the results given by the
RPA and Hubbard functions. The results for K are more spread out, and the value of
Wee obtained using the LDA function is far above the experimental limit. We have not
calculated the corrected values for Li, since there are no experiments to compare with (at
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least to our knowledge), but it is obvious that the LDA function will give a much higher
value ofWee/T − ρee/L0T

2 than the other functions. Since the RPA, SSTL and Hubbard
dielectric functions show a rather similar behaviour ofWee(P ) for all three alkali metals, it
is impossible to select the best one. However, since the LDA dielectric function gives less
correct values for K and deviates from the results given by the other dielectric functions for
Li and Na, we can conclude that it gives less reliable results.

In general, the dynamical results deviate strongly from the experimental ones, ending
up outside the experimental limits, in some cases even far outside the limits (as is the case
with the LDA function for K). The only results that fit into the experimental limits are
those obtained when using the RPA function for Na, with a result somewhat lower than
in the static case. Using the RPA function, there is no difference between theGW - and
GW0-approximation, since0 = 1 in this case. However, the dynamical approximation
seems to be less reliable, since in the case of K, the RPA function gives a result which is
above the experimental limit.

5. Conclusions

The thermal resistivityWee is derived using the Fermi liquid model. Bandstructure effects
are then included via the band-mass and a modified, effective electron radius,r∗

s . Describing
a solid, this approximative way of taking care of the bandstructure will be most reliable for
those alkali metals where the structure is most free-electron-like. The screening is described
using four different dielectric functions, with both a static and a dynamic approximation.
Calculating the electron–electron interaction,f (k, k′), we have shown, using a sum rule,
equation (32), that the dynamic approximation gives results that are far from zero, the
correct result. The reason for this is not obvious. It might be the dynamical approximation
that is not useful in this case. In the static case, we have shown that a vertex correction
should be included in the self-energy when a screening more complex than the RPA is used.

Since the calculations are based on the Fermi liquid model, the results for Na, which is
most free-electron-like, should have the best correspondence with experiment. This is also
true, at atmospheric pressure, where all static, dielectric functions give results forWee(0) that
are within the experimental limits. However, the differences are quite prominent, with the
LDA function giving the largest value and the SSTL function the lowest value. With more
accurate experiments, it would be possible to tell which of the screening functions to use,
i.e. which function gives the most accurate description of the electron–electron interaction
in this case.

The Fermi liquid model is less suitable for K, particularly at higher pressures, where
the Fermi surface is rather disturbed, resulting in an increasing band-mass [4]. As a
consequence, the thermal resistivity shows a minimum in the pressure interval. The results
for the RPA and the Hubbard function are quite similar, while the SSTL function gives a
more rapid increase for higher pressures. This is mainly caused by a rapidly increasing
quasiparticle mass.

Li, finally, gives almost the same results for the SSTL and Hubbard functions, while
the results for the RPA function are considerably lower. There are no experimental results
for Li, which has a phase transition at low temperature, but for this case with a higher
melting point than the other alkali metals, it would be possible to measureWee(P ) at
room temperature. Such an experiment would give a lot of information concerning the
different screening functions. The LDA function gives values ofWee(P ) that apparently
are unrealistic for both K and Li. These deviations are an effect of a singularity that occurs
in the vertex function and dielectric function for high enough radius,rs > 5.
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Not surprisingly, from the poor results for the sum rule, the dynamic approximation gives
results forWee(P = 0) that agree less well with the experimental results, with deviations
exceeding (in some cases very substantially) the experimental limits.

The quasiparticle mass and the spin magnetic susceptibility have also been calculated,
expressed in Landau parameters, and compared with experiments. In the static case, we
find that the LDA function is inadequate to reproduce the experimental values for high
enough effective radius,r∗

s > 4.5, while the SSTL function gives the best agreement with
the experimental values, even though the susceptibility is too low. In the dynamic case, the
results usually deviate more from the experimental results, with the LDA function showing
the largest deviations, which are in some cases rather unrealistic.
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Appendix

The three-dimensional integrals to be calculated, using a dynamic dielectric function, are
given as

fe(k, k′) = −W ′(k − k′) + 1

π

∫
v′(q)

{
2W ′(k − k′)

(k − k′) · q + iδe

×
[
21

(
1 + ω′2

p

((q + k) · q + iδe)2 − ω̃′2(q)

)

− 22

(
1 + ω′2

p

((q + k′) · q + iδe)2 − ω̃′2(q)

)]

−v′(q + k − k′)
[
21

(
1

(q + k − k′) · q + iδe

×
(

1 + ω′2
p

((q + k) · q + iδe)2 − ω̃′2(q)

)
×

(
1 + ω′2

p

((q + k) · q + iδe)2 − ω̃′2(q + k − k′)

)
+ 2ω′2

p((q + k) · q + iδe)

×
((

1 + ω′2
p

ω̃′2(q) − ω̃′2(q + k − k′)

)
1

([(q + k) · q + iδe]2 − ω̃′2(q))2

+
(

1 − ω′2
p

ω̃′2(q) − ω̃′2(q + k − k′)

)
× 1

([(q + k) · q + iδe]2 − ω̃′2(q + k − k′))2

))
− 23

(q + k − k′) · q + iδe

(
1 + ω′2

p

((q − k′) · q − iδe)2 − ω̃′2(q)

)
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×
(

1 + ω′2
p

((q − k′) · q − iδe)2 − ω̃′2(q + k − k′)

)]}
dq (A1)

f0(k, k′) = − 1

π

∫
v′2(q)

{
1

(k − k′) · q + iδ0

×
[
21

(
1 + ω′2

p

((q + k) · q + iδ0)2 − ω̃′2(q)

)2

− 22

(
1 + ω′2

p

((q + k′) · q + iδ0)2 − ω̃′2(q)

)2
]

− 1

(q + k − k′) · q + iδ0

[
21

(
1 + ω′2

p

((q + k) · q + iδ0)2 − ω̃′2(q)

)2

− 23

(
1 + ω′2

p

((q − k′) · q − iδ0)2 − ω̃′2(q)

)2
]}

dq (A2)

whereq, k andk′ are in units of 2kF , and with the dimensionless quantities

ω′2
p = 1

3π

(
9π

4

)−1/3

rs (A3)

ω̃′2 = ω′2
p/

[
1 − ε−1(q)

]
(A4)

and where the step functions now are defined as

21 = 2(1/4 − (k + q)2) (A5)

22 = 2(1/4 − (k′ + q)2) (A6)

23 = 2((k′ − q)2 − 1/4) (A7)

andδe andδ0 are infinite real numbers, originating from the Green function and the plasmon-
pole model description of the dielectric function, (10) and (11), to avoid singularities. The
principal value which is to be handled with care occurs in the term containing the step
function 23 in both fe(k, k′) andf0(k, k′) when (q − k′) · q = ω̃′(q). In all other terms
the step functions effectively exclude thoseq-values where the small denominators occur.

The analytical solutions of the azimuthal angle parts (θqk′ ) of the integrals (A1) and (A2)
are given by expanding the denominator in a small interval, cosθqk′0±α, around the critical
point q0 and keeping the linear part only, according to

w(q) ≈ w(q0) + dw(q0)

dq
· (q − q0) (A8)

wherew(q) represents the real part of the denominator, andw(q0) = 0. The validity of
this approximation has been investigated by comparing the results for the two-dimensional
integrals (of|q| and φqk′ ) at the boundary between the analytical and numerical solution,
i.e. at cosθqk′0±α. We use both the exact expression ofw(q) and the linear approximation,
equation (A8), in the last term off0(k, k′), with a squared denominator. Withα = 0.1
the deviations between the analytical and numerical solutions at the boundary are 8% with
rs = 1, and 25% withrs = 6, using the RPA dielectric function. However, the contribution
from the analytical part to the totalthree-dimensionalintegral is61%, indicating that the
linear approximation will only have a minor effect on the final result.
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